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The integrated exposure uptake biokinetic (IEUBK) model, recommended for use by the U.S.
Environmental Protection Agency at residential Superfund sites to predict potential risks to chil-
dren from lead exposure and to establish lead remediation levels, requires an interindividual geo-
metric standard deviation (GSDi) as an essential input parameter. The GSDi quantifies the vari-
ability of blood lead concentrations for children exposed to similar environmental concentrations
of lead. Estimates of potential risks are directly related to the GSDi, and therefore the GSDi
directly impacts the scope of remediation at Superfund sites. Site-specific GSDi can be calculated
for sites where blood lead and environmental lead have been msured. This paper uses data from
blood and environmental lead studies conducted at the Bingham Creek and Sandy, Utah,
Superfund sites to calculate GSDi using regession modeling, box modeling, and stuctural equa-
tion modeling. GSD,s were calculated using various methods for treating values below the analyti-
cal method detection and quantitation limits. Treatment of nonquantifiable blood lead concentra-
tions affected the GSDi more than the statistical method used to calkulate the GSDi. For any
given treatment, the different statistical methods produced similar GSDis. Because of the uncer-
tainties associated with data in the blood lead studies, we recommend that a range of GSDis be
used when analyzng site-specific risks associated with exposure to environmental lead instead ofa
single estimate. Because the difierent statistical methods produce similar GSDis, we recommend a
simple procedure to calculate sitespecific GSDi from a scientifically sound blood and environ-
mental lead study. Key words blood lead varability, integrated exposure uptake biokinetic model,
interindividual geometric standard deviation, lead exposure, risk analysis. Enwron Health Perspect
107:481487 (1999). [Online 6 May 1999]
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The integrated exposure uptake biokinetic
(IEUBK) model for lead is recommended for
use by the U.S. Environmental Protection
Agency (EPA) at residential Superfund sites to
predict potential risks to children from lead
exposure and to establish lead remediation
levels (1). The IEUBK model is designed to
integrate exposure from lead in air, water, soil,
dust, diet, paint, and other sources with phar-
macokinetic modeling to predict blood lead
concentrations in children 6 months to 7
years of age. Based on the available informa-
tion about children's exposure to lead, the
model estimates a distribution of blood lead
concentrations centered on the geometric
mean blood lead concentration. This distribu-
tion is described by the interindividual geo-
metric standard deviation (GSDi) and is
intended to represent the variability in blood
lead concentrations for children exposed to
similar environmental concentrations of lead.
This variability is a result of behavioral and
physiological differences and variability intro-
duced during laboratory analysis. From this
distribution, the IEUBK model calculates the
probability that children's blood lead concen-
trations will exceed a level of health concern.
The EPA has established a blood lead concen-
tration of 10 pg/dL as the level of health con-
cern. The EPA Superfund program has also

made a policy decision that no more than
5% of the distribution of blood lead concen-
trations should exceed this 10 pg/dL concen-
tration of health concern (Z). For example,
lead-contaminated soil at Superfund sites will
be remediated to a level where there is no
more than a 5% probability of blood lead
concentrations in children exceeding 10
pg/dL, as calculated by the IEUBK model,
even when measured blood lead concentra-
tions in the site population are below 10
pg/dL. For a given geometric mean blood
lead concentration predicted by the IEUBK
model, when the GSDi is large, a larger por-
tion of the population is expected to be above
the blood lead concentration of 10 pg/dL.
This results in a larger estimate of risk and a
greater extent of remediation at a site. When
the GSDi is smaller, even though the estimat-
ed geometric mean blood lead concentration
is the same, less of the population falls above
10 pg/dL, and less remediation is needed.
Given that blood lead concentrations in the
U.S. population have been decreasing since
the 1970s and that the national average is 2.3
pg/dL (3), even minor changes in the GSDi
can have a significant impact on the extent
and costs oflead site remediation.

The recommended default GSDi for
the IEUBK model for lead is 1.6 and is

based on an average of GSDi calculations
from blood lead studies at three lead-conta-
minated sites. The GSD.s for these sites
ranged from 1.5 to 1.7 (1). These GSDis
were calculated using residual standard
deviation estimates in a system of structural
equations and used all blood lead concen-
trations as reported. At the majority of haz-
ardous waste sites where lead is a contami-
nant, few environmental data and no blood
lead concentrations are collected. At these
sites it is appropriate, and generally protec-
tive, to use the default GSD; in the IEUBK
model to characterize variability in blood
lead distributions and calculate media-spe-
cific cleanup goals. However, given regional
differences in population demographics and
behaviors, the GSD; may vary from site to
site. GSDi estimates for several mining and
smelting sites ranging from 1.3 to 1.8 have
been reported (4). If a well-designed and
representative blood lead study has been
conducted for a site, this information can
be useful in calculating a site-specific GSDi,
which improves the accuracy of the IEUBK
model predictions and the calculation of
media-specific cleanup goals.

This paper presents several methodolo-
gies for calculating the GSDi, including
those described in the Guidance Manualfor
the IEUBK Modelfor Lead in Children (1)
and discusses the performance advantages
and limitations of each. Statistical methods
used to calculate the GSDi include nonlin-
ear regression analysis, structural equation
modeling, and two variations of the box
model. For the box model, three methods
to derive the median were used to estimate
the GSD

The guidance manual for the IEUBK
model describes two methods for estimating
the GSDi. The first is commonly called a
box model, and the second is a direct regres-
sion method based on the assumption that
blood lead concentrations are approximately
linear functions of soil and dust lead
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concentrations, with age-dependent regres-
sion coefficients (1).

Environmental, blood lead, and behav-
ioral data used in this paper were collected by
the University of Cincinnati (Cincinnati,
OH). The blood lead studies were for chil-
dren from Bingham Creek and Sandy, Utah.
Bingham Creek is a residential community
southwest of Salt Lake City. Homes in the
community are located on or adjacent to tail-
ings deposits from mining and milling oper-
ations in the Oquirrh Mountains. Sandy is
also southwest of Salt Lake City in Salt Lake
County and was home to four lead smelters
that operated in the 1870s. One of these
smelters continued to operate until 1902.

Methods
This section briefly describes the methods
used by the University of Cincinnati to col-
lect data for the two blood lead studies and
the statistical analyses used for calculating
the GSDi for the studies.

Blood lead studies. Investigators from
the University of Cincinnati measured envi-
ronmental concentrations of lead, potential
exposure variables, social and demographic
variables, and blood lead for both the
Bingham Creek and the Sandy studies.
Results of these studies are available as part
of the administrative records for these
Superfund sites (5,6). Measured variables
included in the calculations of the GSD.
were lead concentrations in residential inte-
rior surface dust; exterior surface dust at
entry; exterior surface dust at street curb; soil
collected from the house perimeter, garden,
bare yard area, play area, or sandbox; water
at the kitchen tap; and interior paint. Other
variables measured and included were house
age, dust loading, the Hollingshead socioe-
conomic status (SES), child's age, and fre-
quency of child's mouthing behaviors as
determined through a survey. The minimal
amount of data required for an individual
child to be included in the statistical analy-
ses was blood lead, soil lead, and interior
dust lead concentrations.

In the Bingham Creek study, environ-
mental media sampling occurred during
June, July, August, and September of
1993, and blood lead sampling occurred
during August, September, and October of
1993. In the Sandy study, environmental
media sampling occurred during April,
May, and June of 1994, and blood lead
sampling occurred during October and
November of 1994.

Soil, exterior dust, and paint lead con-
centrations were analyzed using X-ray fluo-
rescence spectroscopy. Atomic absorption
spectroscopy (AA) was used as a verifica-
tion technique. Handwipe, interior dust,
and water samples were analyzed by AA.

Air sampling data were not collected at the
Sandy smelter or Bingham Creek sites.
However, lead concentrations in the air
were collected from air monitoring sam-
plers at other residential smelter sites in the
Salt Lake City area. Results of that sam-
pling showed lead concentrations in air are
less than 0.11 pg/m3 (2)-below average
urban air lead concentrations.

Blood lead was analyzed using anodic
stripping voltometry (ASV). Each sample
was analyzed twice, and the duplicate values
were averaged. Method detection limits for
ASV were reported by the University of
Cincinnati at 1.4 ± 0.4 pg/dL. Method
quantitation limits, defined as 5-10 stan-
dard deviations above the blank signal (8),
were determined from the reported stan-
dard deviation. For the statistical analyses,
the method quantitation limit of 5 standard
deviations above the blank signal was select-
ed. The resulting method quantitation limit
was 2 pg/dL.

Child mouthing behavior was reported
in a graduated manner for 14 questions that
addressed sucking behavior and mouthing
behavior toward 10 objects, and whether
the child took food or a pacifier while in the
yard. A weighted system was used to nor-
malize the results of the responses.

Statistical analyses. Statistical analyses
used to evaluate the GSDi were nonlinear
regression analysis, structural equation
modeling, and box modeling. Each of these
analyses is described in this section.

Initial exploratory data analysis consist-
ed of univariate distributional fitting;
Spearman rank correlations among blood,
environmental, and behavioral lead data;
and three-dimensional plots of log-trans-
formed blood, soil, and dust lead data.

Both the Bingham Creek and Sandy
blood lead data sets reported blood lead
concentrations below the detection limit of
1.4 pg/dL and values below the lowest
method quantitation limit of 2.0 pg/dL.
Values reported below the method quantita-
tion limit are considered nonquantifiable
values. Several data treatments were used to
address the nonquantifiable values. GSDi
values were calculated using the data as
reported, replacing values below the detec-
tion limit with one-half the detection limit
(0.7 pg/dL), values below the detection limit
with the detection limit (1.4 pg/dL), values
below the method quantitation limit with
one-half the method quantitation limit (1.0
pg/dL), and values below the method quan-
titation limit with the method quantitation
limit (2.0 pg/dL).

Nonlinear regression analysis. Nonlinear
regression analysis consisted of two log
regression model equations-the log of lin-
ear and the linear in log models (9,10). The

log of linear model regresses the log of the
sum of all explanatory variables on the
response variable, the log of blood lead.
The linear in log model regresses the sum
of the log of each explanatory variable on
the log of blood lead. The explanatory vari-
ables consist of combinations of age, soil
lead, dust leads inside and outside the
home, mouthing index, and the SES. Age
was represented by a dummy variable and
was stratified in 12-month intervals from 0
to 72 months.

Nonlinear regression model selection.
Competitive models using various combina-
tions of the explanatory variables were evalu-
ated for selection of the best model on the
basis of greater adjusted R2, positive coeffi-
cients (except SES), and positive coefficients
significantly greater than zero. Some simple
regression diagnostics such as residual nor-
mality, autocorrelation, and homogeneity of
variance were performed to assess model
validity. Nonlinear regression models were
fit using the nonlinear regression program in
SYSTAT (SYSTAT for Windows: Statistics,
version 5 edition; Evanston, IL). Nonlinear
regression was performed to accommodate
small departures from linearity.

The residual log blood lead is the dif-
ference between the observed log blood
lead and the estimated log blood lead. The
GSDi for nonlinear regression models is
calculated as the exponential of the square
root of the variance of the residual log
blood lead. The approximate two-sided
95% confidence interval (CI) around the
GSDi is given by:

CI = ex{ rv ± (tO.975, df)(rv) 2/df

where rv is the residual variance; df is the
degrees of freedom (sample size minus
number of explanatory variables minus 1)
of the nonlinear regression; and t is the
97.5 percentile of the tdistribution with df

Structural equation modeling. Structural
equation models (SEqMs) were developed
for this study in a manner analogous to the
nonlinear regression models. SEqM in this
comparison was performed using EQS ver-
sion 4.02 (BMDP Statistical Software, Inc.,
Los Angeles, CA) and PROC MODEL in
the SAS/ETS (Econmetrics and Time
Series) package (SAS Institute, Inc., Cary,
NC). EQS was used to develop linear in log
models, and PROC MODEL was used to
develop log of linear models. Data were also
analyzed using SAS PROC LIFEREG, an
alternative method using censored regression
modeling.

There are a number of differences in the
purposes and methods between EQS and
PROC MODEL, although similar results
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can be obtained when comparable methods
are used. The EQS estimation procedure
used in the SEqM was maximum-likelihood
with robust error estimates. The PROC esti-
mation procedures evaluated in this compar-
ison were: seemingly unrelated regressions
(SUR); iterated three-stage least squares
(IT3SLS); generalized method of moments
(GMM); iterated generalized method of
moments (ITGMM); and full information
maximum likelihood (FIML). Details of dif-
ferences among the methods are described
in the ETS User's Guide (11).

The EQS and SAS models were evalu-
ated and a best model for each data treat-
ment was selected based on goodness-of-fit
statistics, and significantly positive environ-
mental lead coefficients for those explana-
tory variables regressed directly on blood
lead (12-15).

Box models. The box model is a simple
approach to calculating a GSDi without
complex statistical programs. It is based on
the assumption that children of similar envi-
ronmental exposure will have similar blood
lead concentrations. Children with similar
soil lead, dust lead, and other lead exposures
can be grouped together in boxes. The geo-
metric blood lead mean and the geometric
standard deviation of each box (GSDib) is
calculated. The GSDib are ranked from
smallest to largest. The GSDi is then calcu-
lated from the ranked GSDib. Three meth-
ods were used to calculate GSDi using the
box model results: using the median value
(the middle value), calculating the weighted
median value (the value associated with the
median number of children), and calculating
the weighted variance (multiplying the intra-
box variance by the number of children in
the box, dividing the square root of the sum
by the square root of the degrees of freedom,
and exponentiating the result). The 95%
confidence limits around the GSDi were
determined for the median and weighted
median using nonparametric confidence lim-
its for quantiles (16) and for the weighted
variance using approximate confidence limits
for the mean (16). Variables included in this
comparison were soil, dust, child's age, and
numbers of families per box.

For the static box model, the data set is
first divided into subgroups by the variable
selected. Each subgroup represents a box.
Boxes were defined by graduating soil and
dust concentrations in increments of 200
mg/kg. The natural logarithm of each blood
lead was then placed in the appropriate box
and the GSD of the cell is calculated.
Microsoft Excel (version 5.0; Microsoft
Corp., Redmond, WA) pivot tables were
used to create each model.

The sliding box model develops less
arbitrary boxes. For sliding box models,

data were treated identically to static box
models; however, the cells overlapped. By
overlapping concentrations of soil and
dust, a child could be a member of more
than one cell. This method adds power to
the results by increasing the number of
boxes that can be used and by increasing
the number of children in each box.
However, because the mean blood lead
concentration of some, but not all, children
is used more than once, it could be argued
that sliding box results are biased.

Results
The results of the statistical analyses of the
Bingham Creek and Sandy studies are pre-
sented separately. There were 875 children
in the Bingham Creek data set with blood
lead, soil lead, and interior dust lead con-
centrations included in the analysis. In
blood lead samples from 170 of the chil-
dren, at least 1 of the duplicate values was
below the method detection limit. In blood
lead samples from 65 children, both of the
values were below the method detection
limit. Samples from 377 of the children had
at least 1 of the duplicate values below the
method quantitation limit, and samples
from 94 of the children had both values
below the method quantitation limit. A
large majority of the children (n = 832)
lived in homes where both the soil and dust
lead concentrations were below 400 mg/kg.
The geometric mean blood lead concentra-
tion for the Bingham Creek data set was 3.1
pg/dL and the sample GSD was 1.6.

None of the environmental data for
children included in the analysis fit any
of the common univariate distributions.
Concentrations of lead in soil, water, and
interior and exterior dust were significantly
correlated with blood lead concentrations at
the 5% level of significance. Age and SES
were negatively correlated, whereas the envi-
ronmental variables were positively correlated

with blood lead concentrations. Average soil
concentration was significantly positively
correlated with both interior and exterior
dust. Generally, the correlations were signifi-
cant but were small. The three-dimensional
plot of soil, interior dust, and blood lead did
not reveal any apparent outliers.

The best nonlinear regression model for
the Bingham Creek data set was

log (observed blood lead) = log (BD x inte-
rior dust lead + BE x entryway dust lead +
B x12x [age 0-12 months] + ... + B60-72 x
[age 60-72 months] + BM x [mouthing
index] + BM x BS x [mouthing index] x
soil lead + BSESx SES)

where BD = parameter estimate for dust
lead; BE = parameter estimate for entryway
dust; B 12= parameter estimate for children
between 0 and 12 months of age; B60-72 =
parameter estimate for children between 60
and 72 months of age; BM= parameter esti-
mate for mouthing behavior; BS = parame-
ter estimate for soil lead; BSES = parameter
estimate for socioeconomic status.

The results of different detection and
quantitation limit treatments on the log of
linear and linear in log model types are pre-
sented in Table 1. Depending on the treat-
ment of values below the detection and
quantitation limits, GSDi ranged from 1.4
to 1.7.

Regression residual diagnostics were
problematic. The residual average was close
to zero (<0.0001 for all models and below
detection limit treatments), and the resid-
ual variance was typically approximately
0.2. The residuals were not normally dis-
tributed, as evidenced by normality plots
and the Shapiro-Francia extension of the
Shapiro-Wilk test (as implemented in the
IMSL FORTRAN subroutine included in
Microsoft FORTRAN Powerstation
Professional Edition version 4.0). The

Table 1. Nonlinear regression analysis results for the Bingham Creek data set.

Lower 95% Interindividual Upper 95%
Treatment Model type CL GSD CL
All children, blood lead Log of linear 1.5 1.6 1.6
as reported Linear in log 1.5 1.6 1.6
Replacement of blood lead values Log of linear 1.4 1.5 1.5
below detection limit with Linear in log 1.4 1.5 1.5
detection limit
Replacement of blood lead values Log of linear 1.6 1.6 1.6
below detection limit with Linear in log 1.6 1.6 1.6
1/2 detection limit

Replacement of blood lead values Log of linear 1.4 1.4 1.4
below quantitation limit with Linear in log 1.4 1.4 1.4
quantitation limit
Replacement of blood lead values Log of linear 1.6 1.7 1.7
below quantitation limit with Linear in log 1.6 1.7 1.7
1/2 quantitation limit

Abbreviations: CL, confidence limits; GSD, geometric standard deviation.
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Spearman rank measure of heteroscedasti-
city (17) typically indicated the residuals
exhibited homogeneity of variance, whereas
the score test (18,19) indicated the residu-
als did not exhibit homogeneity of vari-
ance. Results of these two homogeneity of

variance tests usually agree. Residual plots
failed to show marked evidence of het-
eroscedasticity. The residuals were never
serially correlated.

An SEqM diagram for the Bingham
Creek data set is presented in Figure 1.

. il.

j:it

Figure 1. Structural equation model for lead in Bingham Creek children. All paths are significant unless
indicated otherwise.

Table 2. Structural equation model results for the Bingham Creek data set.

Lower Interindividual Upper
Treatment Model type 95% CL GSD 95% CL
All children, blood lead Log of linear 1.6 1.6 1.6
as reported Linear in log 1.5 1.6 1.6
Replacement of blood lead values Log of linear 1.5 1.5 1.5
below detection limit with Linear in log 1.5 1.5 1.5
detection limit

Replacement of blood lead values Log of linear 1.5 1.6 1.6
below detection limit with Linear in log 1.6 1.6 1.7
1/2 detection limit

Replacement of blood lead values Log of linear 1.4 1.5 1.5
below quantitation limit with Linear in log 1.4 1.4 1.4
quantitation limit

Replacement of blood lead values Log of linear 1.5 1.6 1.6
below quantitation limit with Linear in log 1.6 1.7 1.7
1/2 quantitation limit

Abbreviations: CL, confidence limit; GSD, geometric standard deviation.

SEqM GSDs are presented in Table 2.
Depending on the treatment of values
below the detection and quantitation lim-
its, GSDi ranged from 1.4 to 1.7. The SAS
PROC LIFEREGC model resulted in GSD
ranging from 1.7 to 1.8.

Results of the box models are presented
in Table 3. Depending on treatment of val-
ues below the detection and quantitation
limits, GSD, ranged from 1.3 to 1.7.

There were 105 children in the Sandy
data set with blood lead, soil lead, and inte-
rior dust lead concentrations included in
the analysis. In blood lead samples from 14
of the children, at least 1 of the duplicate
values was below the method detection
limit. In blood lead samples from six chil-
dren, both of the values were below the
method detection limit. Samples from 23
of the children had at least l of the dupli-
cate values below the method quantitation
limit, and samples from 10 of the children
had both values below the method quanti-
tation limit. The geometric mean blood
lead concentration for the Sandy data set
was 3.1 pg/dL. The sample GSD was 1.6.

All data for children included in the
analysis of the Sandy data set fit log-normal
distributions. Concentrations of lead in soil,
entry dust, and mouthing index were signif-
icantly correlated with blood lead, but the
correlations were small. Interior dust, curb
dust, age, and SES were not significantly
correlated with blood lead concentrations.

The best nonlinear regression model for
the Sandy data set was

log (observed blood lead) = log [BS x soil
lead + BM x mouthing index + BSES x
SES+ B(_12 X (age 0-12 months) + ... +
B60-72 x (age 60-72 months)],

Table 3. Box model results for the Bingham Creek data set.

Lower Upper Lower Weighted Upper Lower Weighted Upper
Treatment 95% CL Median 95% CL 95% CL median 95% CL 95% CL variance 95% CL
Static box
All children, blood lead as reported 1.4 1.6 1.9 1.5 1.5 1.5 1.5 1.6 1.7
Replacementof blood lead values below 1.2 1.6 1.9 1.6 1.6 1.6 1.6 1.6 1.7
detection limit with detection limit

Replacementof blood leadvalues below 1.4 1.5 1.7 1.5 1.5 1.5 1.4 1.5 1.5
detection limit with 1/2 detection limit

Replacement of blood lead values below 1.3 1.3 1.6 1.3 1.3 1.3 1.3 1.3 1.4
quantitation limit with quantitation limit

Replacement of blood lead values below 1.4 1.7 1.9 1.7 1.7 1.7 1.5 1.7 1.8
quantitation limit with 1/2 quantitation limit

Sliding box
All children, blood lead as reported 1.5 1.6 1.8 1.5 1.5 1.5 1.5 1.6 1.6
Replacement of blood lead values below 1.6 1.6 1.7 1.6 1.6 1.6 1.6 1.6 1.7
detection limit with detection limit

Replacement of blood lead values below 1.5 1.5 1.6 1.5 1.5 1.5 1.5 1.5 1.6
detection limit with 1/2 detection limit

Replacement of blood lead values below 1.3 1.4 1.5 1.4 1.4 1.4 1.3 1.4 1.5
quantitation limit with quantitation limit

Replacement of blood lead values below 1.7 1.7 1.9 1.7 1.7 1.7 1.6 1.7 1.8
quantitation limit with 1/2 quantitation limit

CL, confidence limit.
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where SES = socioeconomic status. The
results of different detection limit treat-
ments on the log of linear and linear in log
model types with respect to the GSDi are
presented in Table 4. Depending on the
treatment of values below the detection
and quantitation limits, GSD; ranged from
1.3 to 1.6.

The Sandy data regression residual diag-
nostics were better than regression diagnos-
tics for Bingham Creek data. The residual
average was close to zero (< 0.02 for all
models), and the residual variance was typi-
cally approximately 0.2. The residuals were
normally distributed, as evidenced by the
Shapiro-Francia test. The Spearman rank
measure of heteroscedasticity and the score
test typically indicated the residuals exhibit-
ed homogeneity of variance. The residuals
were not serially correlated.

The most appropriate linear in log
SEqM model for the Sandy data set was
similar in form across different treatments of
blood lead values. Soil lead, mouthing
index, and SES were significant at the 95%
level of confidence. SEqM GSDs are pre-
sented in Table 5. Depending on the treat-
ment of values below the detection and
quantitation limits, GSDi ranged from 1.4
to 1.6. The SAS PROC LIFEREG model
resulted in GSDi in the range of 1.8.

An example of a static box model for the
Sandy data set is presented in Table 6.
Results of the box models for the Sandy data
set are presented in Table 7. Depending on
treatment of values below the detection
and quantitation limits, GSDi ranged from
1.3 to 1.7.

Discussion
By definition, the GSDi is assumed to be
independent of exposure to environmental
lead concentrations. The sample GSDs for
both sites fell within the range of the calcu-
lated GSDi. These results suggest that at
Bingham Creek and Sandy environmental
lead exposure contributes little to the vari-
ability in blood lead concentrations.
Analysis of the box models revealed no cor-
relation between the GSDib and soil and
interior dust lead concentration. By using
the GSDib of the individual boxes in the
box models, we determined that for the
Bingham Creek and Sandy data sets, the
GSDi are independent of environmental
lead exposure. The GSDib in the individ-
ual boxes ranged from 1.0 to 2.8, but the
individual box location could not be pre-
dicted by environmental lead concentra-
tions in either soil or dust. As shown in
Table 6, the GSDib for all children used in
the Sandy analysis ranged from 1.0 to 1.9.
The highest GSDib was in the 0-200
mg/kg soil and dust lead box, whereas the

lowest GSDib was in the 400-600 mg/kg
soil lead, 800-1,000 mg/kg dust lead box.

The GSDi can be calculated using sever-
al methods. Each method has advantages
and limitations. The box models do not
require any model-fitting procedures, and
the results are probably most representative
of the strictest definition of GSDi because
the results are based only on environmental
variables. However, some judgment is
required about the important environmen-
tal determinants of the variability in blood
lead. Although soil and dust lead were valu-
able in defining the boxes for the Bingham
Creek data set, they were less adequate for
the Sandy data set. Even when the variables
are chosen appropriately, the sizes of the
box intervals are subjective. Regression
models allow the GSDi to be estimated

from the standard deviation of the residuals
for the log of blood lead.

The underlying assumption of regression
models is that the residuals have the same
standard deviation regardless of the values of
the predictors and that the regression model
is correctly specified. SEqM allows adjust-
ment of blood lead regression models for cer-
tain measurement errors in precursor vari-
ables such as dust lead. However, when the
precursor variables are not actually predictors
of blood lead, complexity of the computa-
tions increases with no improvement in the
fit of blood lead in the model. Many SEqM
results are sensitive to the computational
method chosen for fitting the model.

Variability in calculating the GSDi is
more dependent on the treatment of blood
lead concentrations below the method

Table 4. Nonlinear regression analysis results for the Sandy data set.

Treatment
All children, blood lead
as reported
Replacement of blood
lead values below
detection limit with
detection limit

Replacement of blood
lead values below
detection limit with
1/2 detection limit

Replacement of blood
lead values below
quantitation limit with
quantitation limit

Replacement of blood
lead values below
quantitation limit with
1/2 quantitation limit

Model type

Log of linear
Linear in log
Log of linear
Linear in log

Log of linear
Linear in log

Log of linear
Linear in log

Linear in log

Lower
95% CL

1.5
1.5
1.4
1.4

1.5
1.5

1.3
1.3

1.5

Interindividual
GSD

1.6
1.6
1.5
1.5

1.6
1.6

1.4
1.4

1.6

Upper
95% CL

1.7
1.7
1.6
1.5

1.7
1.7

1.5
1.4

1.7

Abbreviations: CL, confidence limit; GSD, geometric standard deviation.

Table 5. Structural equation model results for the Sandy data set.

Treatment
All children blood lead
as reported
Replacement of blood
lead values below
detection limit with
detection limit

Replacement of blood
lead values below
detection limit with
1/2 detection limit

Replacement of blood
lead values below
quantitation limit with
quantitation limit

Replacement of blood
lead values below
quantitation limit with
1/2 quantitation limit

Model type
Log of linear
Linear in log
Log of linear
Linear in log

Linear in log
Log of linear

Linear in log

Linear in log

Lower
95% CL

1.5
1.5
1.4
1.4

1.5
1.5

1.4

1.5

Interindividual
GSD

1.6
1.6
1.5
1.5

1.6
1.6

1.4

1.6

Upper
95% CL

1.7
1.7

1.6
1.5

1.7
1.7

1.4

1.7

Abbreviations: CL, confidence limit; GSD, geometric standard deviation.
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detection limits and quantitation limits
than the statistical method used to derive it
(Table 8). The comparison of methods to
calculate GSDi demonstrates that for both
sites the GSDi can range between 1.3 and
1.7 depending on the treatment of the
nonquantifiable data. For all methods,
when the treatment of nonquantifiable val-
ues was the same, the resulting GSD; values
were similar. The finding that site-specific
data for Bingham Creek and Sandy GSDi
values < 1.6 are more appropriate for these

sites should not be construed as implying
that a lower GSDi should be used in gener-
al. Many of the earlier studies at urban and
rural sites found GSDi values > 1.6. Higher
GSDi values should be used when there is
reasonable concern about substantial bio-
logic or behavioral diversity in population
exposure and response.

Each treatment of nonquantifiable
values in this comparison is biased. When
measured values are above the method
quantitation limit, they are considered

accurate. Arguments have been put forth
(20) that concentrations reported below
the detection limit should be used as
reported, but using reported blood lead
concentrations as low as 0.0 1tg/dL artifi-
cially increases the variability because there
is residual blood lead in all children (21).
Therefore, we chose to look at the other
data treatments.

The limitations of the nonquantifiable
data could be greatly reduced by using ana-
lytical methods with lower detection limits.

Table 6. Static box model for the Sandy data set.

Dust lead
conc Soil lead concentration (mg/kg)
(mg/kg) Data 0-200 200-400 400-600 600800 800-1,000 1,000-1,200 1,600-1,800 1,800-2,000 2,000-2,200 4,200-4,400
0-200 Count of LBL 17 21 3 3 - 1

Avg of LBL 0.826257 1.283045 1.642563 1.227033 - - - - 1.02961942 -
SD of LBL 0.643582 0.470375 0.316902 0.472756 - - - - - -

200-400 Count of LBL 10 10 10 4 4 - 3 - 2 -

Avg of LBL 1.028939 1.084065 1.127876 1.390070 1.2945183 - 1.62602115 - 1.27040714 -
SD of LBL 0.437716 0.404658 0.434581 0.443858 0.3516118 0.25600139 - 0.39195688 -

400-600 Count of LBL - 2 - 1 1 3 - - -

Avg of LBL - 0.829114 - 0.182322 1.2809338 1.17150869 - - -
SD of LBL - 0.123286 - - - 0.18918157 - - -

600-800 Count of LBL - 1 1 - - 2 - - - 1
Avg of lBL - 0.336472 1.589235 - - 1.18652178 - - - 1.48160454
SD of LBL - - - - - 0.17226683 - - - -

800-1,000 Count of LBL - - 2 - - - -

Avg of LBL - - 1.062327 - - - - - - -
SD of LBL - - 0.097687 - - - - - - -

1,000-1,200 Count of LBL - - - - - - - 1
Avg ofLBL - - - - - - - 1.19392247 - -
SDofLBL - - - - - - - - - -

1,400-1,600 Count of LBL - - - 1 - - - - - -
Avg of LBL - - - 1.840550 - - - - -
SD of LBL - - - - - _ _ - _ _

4,000-4,200 Count of LBL - - - - - 1
Avg of LBL - - - - - 0.78845736 - -
SDofLBL - - - - - - - - - -

Abbreviations: Avg, average; conc, concentration; LBL, log blood level; SD, standard deviation.

Table 7. Box model results for the Sandy data set.

Lower Upper Lower Weighted Upper Lower Weighted Upper
Treatment 95% CL Median 95% CL 95% CL median 95% CL 95% CL variance 95% CL
Static box
All children, blood lead as reported 1.2 1.5 1.6 1.5 1.5 1.6 1.5 1.6 1.7
Replacement of blood lead values below 1.2 1.5 1.6 1.5 1.6 1.6 1.5 1.6 1.8
detection limit with detection limit

Replacement of blood lead values below 1.2 1.4 1.5 1.5 1.5 1.5 1.4 1.5 1.6
detection limit with 1/2 detection limit

Replacement of blood lead values below 1.2 1.4 1.4 1.4 1.4 1.4 1.3 1.4 1.5
quantitation limit with quantitation limit

Replacement of blood lead values below 1.3 1.6 1.6 1.6 1.6 1.7 1.5 1.6 1.8
quantitation limit with 1/2 quantitation limit

Sliding box
All children, blood lead as reported 1.4 1.5 1.5 1.5 1.6 1.6 1.6 1.6 1.7
Replacement of blood lead values below 1.4 1.5 1.6 1.6 1.6 1.7 1.6 1.7 1.7
detection limit with detection limit

Replacement of blood lead values below 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6
detection limit with 1/2 detection limit

Replacement of blood lead values below 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.5
quantitation limit with quantitation limit

Replacement of blood lead values below 1.4 1.5 1.6 1.6 1.6 1.7 1.6 1.6 1.7
quantitation limit with 1/2 quantitation limit

CL, confidence limit.
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The detection limit for isotope dilution
mass spectroscopy is approximately 0.15
pg/dL, 10 times less than ASV. Because all
individuals have a background blood lead
concentration (21), lowering the detection
limit should greatly increase the number of
individuals with detectable values. This
method is more expensive than ASV.
However, if it were used only for blood lead
samples below the method quantitation
limit, costs would be minimized and the
calculated GSDi would be more accurate.

Some may question the necessity of
more accurately measuring blood lead con-
centrations below concentrations of current
health concern. As mentioned previously,
the EPA Superfund program policy is to
remediate hazardous waste sites where the
IEUBK model predicts a more than 5%
probability of exceeding a 10 pg/dL blood
lead concentration. This remediation is rec-
ommended even when measured blood
lead concentrations in the site population
are all below 10 pg/dL. The value or values
used to represent the GSDi in the IEUBK
model have a major impact on the predict-
ed risks to lead at a site and on the extent
of remediation required. For example, at
the Sandy site, the use of a site-specific
GSDi of 1.4 resulted in removing soil from
67 residential yards at an estimated cost of
$6 million. If the IEUBK default GSDi of
1.6 had been used, contaminated soil
would have been removed from 175 resi-
dential yards at a cost of approximately $15
million. No child in the Sandy study had
measured blood lead concentrations > 10
pg/dL (5). The Sandy site is considered
small in comparison with most smelting
and mining sites being investigated by the

Superfund program. We believe more
accurate measurements of blood lead con-
centrations below typical detection limits,
or at the very least, examinations of the
impact of nondetectable values on the cal-
culation of a site-specific GSDi, has merit.

Most risk assessors will not have the
computer software and/or the statistical
background to perform nonlinear regres-
sion and/or SEqM. Because the different
methods for calculating GSDi values yield
similar results, the following simple proce-
dure is recommended to calculate a site-
specific GSDi. First, log transform blood,
soil, and interior dust concentrations.
Using multiple linear regression, regress the
log-transformed soil and dust lead concen-
trations on the log-transformed blood lead
concentrations. Use the box model to cal-
culate the GSDi for environmental vari-
ables having positive lead concentration
coefficients. We recommend the use of the
median as the GSDi because, at least for
data sets where many children have low
concentrations of environmental exposure,
the median value is least affected by the
treatment of nonquantifiable values.

Alhough we have presented a critical
evaluation of calculating a site-specific
GSDi for a site where a well-designed and
representative blood lead study has been
conducted, risk assessors must continue to
use professional judgment when advising
risk managers on future potential risks
at the site. The site-specific GSDi defines
the variability in the current population.
Population demographics and behavior of
the community could shift in the future
and should be considered during risk man-
agement decisions.

Table 8. Summary of the interindividual geometric standard deviations as calculated with different models
for each data treatment.

Bingham Creek Sandy
Treatment NL reg SEqM Static box Sliding box NL reg SEqM Static box Sliding box
All children, blood lead 1.6 1.6 1.6 1.6 1.6 1.6 1.5 1.5
as reported
Replacement of blood 1.5 1.5 1.6 1.6 1.5 1.5 1.5 1.5
lead values below
detection limit with
detection limit

Replacement of blood 1.6 1.6 1.5 1.5 1.6 1.6 1.4 1.5
lead values below
detection limit with
1/2 detection limit

Replacement of blood 1.4 1.4 1.3 1.4 1.4 1.4 1.4 1.4
lead values below
quantitation limit with
quantitation limit
Replacement of blood 1.7 1.7 1.7 1.7 1.6 1.6 1.6 1.5
lead values below
quantitation limit with
1/2 quantitation limit

Abbreviations: NL, nonlinear; reg, regression; SEqM, structural equation model.
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